US ERA ARCHIVE DOCUMENT

Final

Total Maximum Daily Load

for

Dissolved Oxygen

in

Pithlachascotee River

WBID 1409

March 2013

In compliance with the provisions of the Federal Clean Water Act, 33 U.S.C §1251 et. seq., as amended by the Water Quality Act of 1987, P.L. 400-4, the U.S. Environmental Protection Agency is hereby establishing the Total Maximum Daily Load (TMDL) for dissolved oxygen in the Springs Coast Basin (WBID 1409). Subsequent actions must be consistent with this TMDL.

/s/_	3/25/2013_
James D. Giattina, Director	Date
Water Protection Division	

TABLE OF CONTENTS

TABL	E OF CONTENTS	I
LIST	OF FIGURES	III
LIST	OF TABLES	IV
1.0	INTRODUCTION	1
2.0	PROBLEM DEFINITION	2
3.0	WATERSHED DESCRIPTION	3
3.1	CLIMATE	3
3.2	HYDROLOGIC CHARACTERISTICS	3
3.3	LAND USE	3
4.0	WATER QUALITY STANDARDS/TMDL TARGETS	8
4.1	NUTRIENTS CRITERIA	8
4.	1.1.1 Narrative Nutrient Criteria	8
4.	1.1.2 Inland Nutrients Criteria	9
4.2	DISSOLVED OXYGEN CRITERIA	10
4.3	NATURAL CONDITIONS	10
4.4	BIOCHEMICAL OXYGEN DEMAND CRITERIA	10
5.0	WATER QUALITY ASSESSMENT	11
5.1	WATER QUALITY DATA	11
5.	.1.1 Dissolved Oxygen	11
5.	.1.2 Biochemical Oxygen Demand	11
5.	.1.3 Nutrients	11
	5.1.3.1 Total Nitrogen	
	5.1.3.2 Total Phosphorus	
- 0	5.1.3.3 Chlorophyll-a	
6.0	SOURCE AND LOAD ASSESSMENT	
6.1	1 On 1 Bookels	17
	1.1.1 Wastewater/Industrial Permitted Facilities	
	5.1.2 Stormwater Permitted Facilities/MS4s	
6.2	NONPOINT SOURCES	
	5.2.1 Urban Areas	
	5.2.2 Pastures	
	5.2.3 Clear cut/Sparse	
	5.2.4 Forests	
	5.2.5 Water and Wetlands	
0.	2.2.6 Quarries/Strip mines	22

7.0	ANALYTICAL APPROACH	23
7.1	MECHANISTIC MODELING	23
7.2	SCENARIOS	24
2	7.2.1 Current Condition	24
2	7.2.2 Natural Condition	28
8.0	TMDL DETERMINATION	33
8.1	CRITICAL CONDITIONS AND SEASONAL VARIATION	J33
8.2	MARGIN OF SAFETY	34
8.3	WASTE LOAD ALLOCATIONS	34
d	8.3.1 Wastewater/Industrial Permitted Facilities.	34
d	8.3.2 Municipal Separate Storm Sewer System Pe	rmits34
8.4	LOAD ALLOCATIONS	35
9.0	RECOMMENDATIONS/IMPLEMENTA	ΓΙΟΝ36
10.0	REFERENCES	37

LIST OF FIGURES

Figure 2.1	Location of impaired WBID in the Pithlachascotee River basin.	. 2
Figure 3.1	Land use of impaired WBID in the Pithlachascotee River basin	. 4
Figure 3.2	Aerial photo of contributing subwatershed boundaries and impaired WBID in the Pithlachascotee River basin.	
Figure 5.1	Water quality monitoring station locations in WBID 1409	13
Figure 5.2	Dissolved oxygen concentrations in WBID 1409	14
Figure 5.3	Biochemical oxygen demand concentrations in WBID 1409	14
Figure 5.4	Total nitrogen concentrations in WBID 1409	14
Figure 5.5	Total phosphorus concentrations in WBID 1409	15
Figure 5.6	Corrected chlorophyll a concentrations in WBID 1409	15
Figure 6.1	Permitted facilities in the impaired WBID in the Pithlachascotee River basin	18
Figure 7.1	Modeled vs. Measured Flow (cfs) at USGS Station 02310300	24
Figure 7.2	Modeled vs. Observed Temperature (°C) at 21FLPCSWFL0005000263300	25
Figure 7.3	Modeled vs. Observed DO (mg/l) at 21FLPCSWFL0005000263300	25
Figure 7.4	Modeled vs. Observed BOD5 (mg/l) at 21FLPCSWFL0005000263300	26
Figure 7.5	Modeled vs. Observed Total Nitrogen (mg/l) at 21FLPCSWFL0005000263300	26
Figure 7.6	Modeled vs. Observed Total Phosphorus (mg/l) at 21FLPCSWFL00050002633	
Figure 7.7	Modeled vs. Observed Chlorophyl a (ug/L) at 21FLPCSWFL0005000263300	27
Figure 7.8	Natural Condition Scenario Temperature (°C)	29
Figure 7.9	Natural Condition Scenario DO (mg/l)	29
Figure 7.10	Natural Condition Scenario BOD5 (mg/l)	30
Figure 7.11	Natural Condition Scenario Total Nitrogen (mg/l)	30
Figure 7.12	Natural Condition Scenario Total Phosphorus (mg/l)	31
Figure 7.13	Natural Condition Scenario Chlorophyl a (ug/L)	31

LIST OF TABLES

Table 3.1	Land use distribution for the impaired WBID in the Pithlachascotee River basin 5
Table 3.2	Land use distribution for the contributing subwatersheds in the Pithlachascotee River basin
Table 4.1	Inland numeric nutrient criteria9
Table 5.1	Water quality data for impaired WBID 1409 in the Pithlachascotee River basin 16
Table 6.1	Permitted Facilities by WBID
Table 6.2	MS4 Permits by WBID
Table 6.3	County estimates of Septic Tanks and Repair Permits
Table 6.4	Agricultural Census Data for Commercially and manure fertilized farms in Pasco County, Florida
Table 6.5	Agricultural Census Data for Livestock in Pasco County, Florida
Table 7.1 basin.	Current condition concentrations in the impaired WBID in the Pithlachascotee River 28
Table 7.2	Current condition loadings in the impaired WBID in the Pithlachascotee River basin. 28
Table 7.3 basin.	Natural condition concentrations in the impaired WBID in the Pithlachascotee River 32
Table 7.4	Natural condition loadings in the impaired WBID in the Pithlachascotee River basin. 32
Table 8.1	TMDL load allocations for the Pithlachascotee River, WBID 1409 33

SUMMARY SHEET for WBID 1409

Total Maximum Daily Load (TMDL)

2006 303(d) Listed Waterbodies for TMDLs addressed in this report:

WBID	Segment Name	Class and Waterbody Type	Major River Basin	HUC	County	State
1409	Pithlachascotee River	Class III Freshwater	Springs Coast	3100207	Pasco	Florida

TMDL Endpoints/Targets:

Dissolved Oxygen

TMDL Technical Approach:

The TMDL allocations were determined by analyzing the effects of TN, TP, and BOD concentrations on DO concentrations in the waterbody. A watershed model was used to predict delivery of pollutant loads to the waterbody and to evaluate the in-stream impacts of the pollutant loads.

TMDL Waste Load and Load Allocation

	Current (Condition	TMDL C	ondition	Per	Percent Reduction WLA LA MS4		
Constituent	WLA (kg/yr)	LA (kg/yr)	WLA (kg/yr)	LA (kg/yr)	WLA	LA	MS4	
Total Nitrogen		40,962		14,964		63%	63%	
Total Phosphorus	1	3,147	1	958		70%	70%	
Biochemical Oxygen Demand		52,458		35,311		33%	33%	

Endangered Species Present (Yes or Blank): Yes

USEPA Lead TMDL (USEPA or Blank): USEPA

TMDL Considers Point Source, Non-point Source, or Both: Both

Major NPDES Discharges to surface waters addressed in USEPA TMDL:

Permit ID	Permittee(s)	County	Permit Type
FL0127272	Pasco County Master Reuse System	Pasco	Domestic
FLA012790	Orangewood Lakes MHP Community WWTF	Pasco	Domestic
FLS000032	Pasco County, City of New Port Richey, Florida Department of Transportation	Pasco	Phase I MS4

1.0 INTRODUCTION

Section 303(d) of the Clean Water Act (CWA) requires each state to list those waters within its boundaries for which technology based effluent limitations are not stringent enough to protect any water quality standard applicable to such waters. Listed waters are prioritized with respect to designated use classifications and the severity of pollution. In accordance with this prioritization, states are required to develop Total Maximum Daily Loads (TMDLs) for those water bodies that are not meeting water quality standards. The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions, so that states can establish water quality based controls to reduce pollution from both point and nonpoint sources and restore and maintain the quality of their water resources (USEPA 1991).

The Florida Department of Environmental Protection (FDEP) developed a statewide, watershed-based approach to water resource management. Under the watershed management approach, water resources are managed on the basis of natural boundaries, such as river basins, rather than political boundaries. The watershed management approach is the framework FDEP uses for implementing TMDLs. The state's 52 basins are divided into five groups and water quality is assessed in each group on a rotating five-year cycle. FDEP also established five water management districts (WMD) responsible for managing ground and surface water supplies in the counties encompassing the districts. The waterbody addressed in this TMDL is located in the Springs Coast Basin and is a Group 5 waterbody managed by the Southwest Florida Water Management District (SWFWMD).

For the purpose of planning and management, the WMDs divided the district into planning units defined as either an individual primary tributary basin or a group of adjacent primary tributary basins with similar characteristics. These planning units contain smaller, hydrological based units called drainage basins, which are further divided by FDEP into "water segments". A water segment usually contains only one unique waterbody type (stream, lake, canal, etc.) and is about 5 square miles. Unique numbers or waterbody identification (WBID) numbers are assigned to each water segment. The WBID in this TMDL, WBID 1409 Pithlachascotee River, is located in the Middle Coastal Planning Unit and is impaired for dissolved oxygen.

2.0 PROBLEM DEFINITION

To determine the status of surface water quality in Florida, three categories of data – chemistry data, biological data, and fish consumption advisories – were evaluated to determine potential impairments. The level of impairment is defined in the Identification of Impaired Waters Rule (IWR), Section 62-303 of the Florida Administrative Code (FAC). The IWR is FDEP's methodology for determining whether waters should be included on the state's planning list and verified list. Potential impairments are determined by assessing whether a waterbody meets the criteria for inclusion on the planning list. Once a waterbody is on the planning list, additional data and information will be collected and examined to determine if the water should be included on the verified list.

The TMDL addressed in this document is being established pursuant to commitments made by the United States Environmental Protection Agency (USEPA) in the 1998 Consent Decree in the Florida TMDL lawsuit (Florida Wildlife Federation, et al. v. Carol Browner, et al., Civil Action No. 4: 98CV356-WS, 1998). That Consent Decree established a schedule for TMDL development for waters listed on Florida's USEPA approved 1998 section 303(d) list. The 1998 and 2006 section 303(d) lists identified numerous WBIDs in the Springs Coast Basin as not meeting water quality standards. After assessing all readily available water quality data, USEPA is responsible for developing a TMDL for WBID 1409, depicted in Figure 2.1, which is impaired for dissolved oxygen.

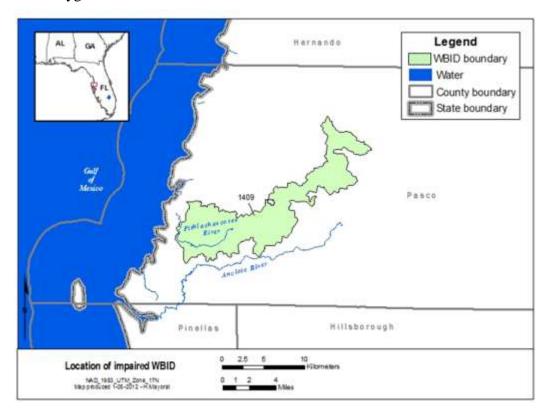


Figure 2.1 Location of impaired WBID in the Pithlachascotee River basin.

3.0 WATERSHED DESCRIPTION

The Springs Coast Basin is located along the west coast, beginning just south of the Withlacoochee River in Citrus County and extends to Gulfport, Florida in Pinellas County, although it does not include Tampa Bay and its contributing watersheds. Within the watershed lies six major rivers, Crystal River, Homosassa River, Chassahowitza River, Weeki Wachee, the Anclote River, and the Pithlachascotee River; along with numerous springs and lakes (FDEP). The Brooksville Ridge marks the eastern boundary of the Springs Coast Basin, created by sands historically deposited during higher sea-levels, and which define the karst geology that is characteristic of the area (FDEP 2008).

Three physiographic regions with varying geology and topography are located within the Springs Coast Basin, the Coastal Swamps, the Gulf Coastal Lowlands, and the Brooksville Ridge. The Pithlachascotee River is located in the southwestern portion of the Springs Coast Basin in the Coastal Swamps region and the Gulf Coastal Lowlands (SWFWMD 2001). The Coastal Swamp region is characterized by poorly drained shallow soils that overlay the limestone of the Floridan aquifer. The Gulf Coast Lowlands are characterized by flat river valleys and rolling hills formed by aeolian deposited sands. Much of the Gulf Costal Lowlands, including regions in close proximity to the Gulf of Mexico, have been and continue to be intensively developed, although large sections of federally owned tracts of wetlands and swamps have been preserved (FDEP). The southwest region of the Springs Coast has a fewer springs than the northern region, and the springs have relatively low flow volumes (FDEP 2008).

3.1 Climate

The Springs Coast Basin is located in Central Florida and experiences a humid subtropical climate with distinct wet (May to October) and dry (November to April) seasons, high rates of evapotranspiration, and climatic extremes of floods, droughts, and hurricanes. Seasonal rainfall patterns resemble the wet and dry season patterns of humid tropics. Central Florida receives an average of 46 inches of rain every year, of which 75% falls during the wet season, which coincides with hurricane season (USACE and SFWMD 2010). Average temperatures during the wet season are in the low-80s (°F) and in the dry season are in the mid-60s (°F) (NOAA).

3.2 Hydrologic characteristics

The headwaters of the Pithlachascotee River begin in an agricultural and wetland dominated region in Pasco County Florida. The Pithlachascotee River is a blackwater stream that is approximately 23 miles in length. The River flows west through Starkey Wilderness Park and then through heavily urbanized areas before draining into the Gulf of Mexico near New Port Richey, Florida. Elevations in the drainage basin range from approximately 25 meters mean sea level (msl) in the headwaters to 0 meters msl at the outlet to the Gulf of Mexico. The Pithlachascotee River transitions from riparian areas and swampy lowlands into tidal estuaries with shallow seagrass beds at its mouth. Portions of the river are part of the Florida's Statewide System of Greenways and Trail system. Development in the downstream portion of the Pithlachascotee River has led to increases in stormwater drainage.

3.3 Land Use

The headwaters of the Pithlachascotee River basin are dominated by wetlands and forests, while the downstream segment near the coast is dominated by developed areas (Figure 3.1).

Approximately 27 percent of the land use is classified as wetlands and 25 percent classified as forested. Of the 34 percent of land use classified as developed, over half of the acreage is in high intensity developed classifications. Other land uses in the watershed include open water, pasture, and clear cut/sparse.

The actual drainage area of the Pithlachascotee River varies from the WBID boundary (Figure 3.2). The United States Geological Survey National Hydrography Dataset was used to delineate the drainage area. The acreage from the contributing subwatersheds increased the total area by 40 percent, from approximately 27,123 acres to 37,965 acres. Pasture land use accounts for the largest increase in acreage, followed by open water, and acreages for both increased over 100 percent. Additional acreage was added to the wetlands and forested land uses.

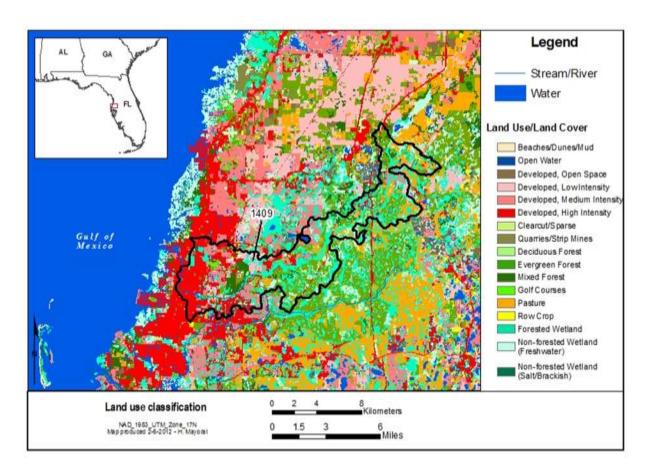


Figure 3.1 Land use of impaired WBID in the Pithlachascotee River basin.

Table 3.1 Land use distribution for the impaired WBID in the Pithlachascotee River basin.

Land Use	14	09
Classification	Acres	%
Evergreen Forest	5,337	20%
Deciduous Forest	20	0%
Mixed Forest	1,343	5%
Forested Wetland	6,001	22%
Non-Forested Wetland (Freshwater)	1,374	5%
Open Water	584	2%
Pasture	1,895	7%
Row Crop	114	0%
Golf Courses	358	1%
Clear cut Sparse	856	3%
Quarries Strip mines	14	0%
Developed, Open Space	625	2%
Developed, Low intensity	1,181	4%
Developed, Medium intensity	2,375	9%
Developed, High intensity	5,047	19%
Utility Swaths	0	0%
Total	27,123	100%

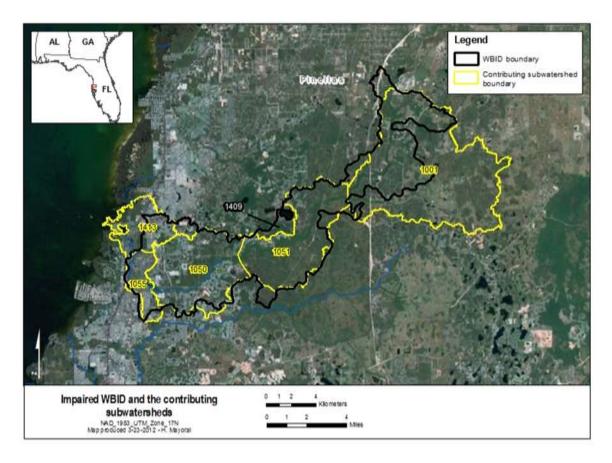


Figure 3.2 Aerial photo of contributing subwatershed boundaries and impaired WBID in the Pithlachascotee River basin.

Table 3.2 Land use distribution for the contributing subwatersheds in the Pithlachascotee River basin.

Land Use Classification	Contributing subwatersheds for WBID 1409	
	Acres	%
Beaches/Dunes/Mud	0	0%
Evergreen Forest	6,546	17%
Deciduous Forest	19	0%
Mixed Forest	1,784	5%
Forested Wetland	8,250	22%
Non-Forested Wetland (Freshwater)	2,552	7%
Non-Forested Wetland (Salt/Brackish)	3	0%
Open Water	1,200	3%
Pasture	3,851	10%
Row Crop	117	0%
Golf Courses	379	1%
Clear cut Sparse	1,402	4%
Quarries Strip mines	75	0%
Developed, Open Space	1,381	4%
Developed, Low intensity	1,725	5%
Developed, Medium intensity	2,521	7%
Developed,	6,160	16%

High intensity		
Totals	37,965	100%

4.0 WATER QUALITY STANDARDS/TMDL TARGETS

The waterbodies in the Pithlachascotee River WBID are Class III Freshwater with a designated use of Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. Designated use classifications are described in Florida's water quality standards. See Section 62-302.400, F.A.C. Water quality criteria for protection of all classes of waters are established in Section 62-302.530, F.A.C. Individual criteria should be considered in conjunction with other provisions in water quality standards, including Section 62-302.500 F.A.C., which established minimum criteria that apply to all waters unless alternative criteria are specified. Section 62-302.530, F.A.C. Several of the WBIDs addressed in this report were listed due to elevated concentrations of chlorophyll *a*. While FDEP does not have a streams water quality standard specifically for chlorophyll *a*, elevated levels of chlorophyll *a* are frequently associated with nonattainment of the narrative nutrient standard, which is described below.

4.1 Nutrients Criteria

The designated use of Class III waters is recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife. In 1979, FDEP adopted a narrative criterion for nutrients. FDEP recently adopted numeric nutrient criteria (NNC) for many Class III waters in the state, including streams, which numerically interprets part of the state narrative criterion for nutrients. FDEP submitted its NNC to EPA for review pursuant to section 303(c) of the CWA. On November 30, 2012, EPA approved those criteria as consistent with the requirements of the CWA. The state criteria, however, are not yet effective for state law purposes.

Also, in November 2010, EPA promulgated numeric nutrient criteria for Class III inland waters in Florida, including streams. On February 18, 2012, the streams criteria were remanded back to EPA by the U.S. District Court for the Northern District of Florida for further explanation. On November 30, 2012, EPA re-proposed its stream NNC for those flowing waters not covered by Florida's NNC rule.

Therefore, for streams in Florida, the applicable nutrient water quality standard for CWA purposes remains the Class III narrative criterion.

4.1.1 Narrative Nutrient Criteria

Florida's narrative nutrient criteria provide:

The discharge of nutrients shall continue to be limited as needed to prevent violations of other standards contained in this chapter. Man induced nutrient enrichment (total nitrogen and total phosphorus) shall be considered degradation in relation to the provisions of Sections 62-302.300, 62-302.700, and 62-4.242 F.A.C. See paragraph 62-302.530(47)(a), F.A.C.

In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna. <u>See</u> paragraph 62-302.530(47)(b), F.A.C.

Chlorophyll and DO levels are often used to indicate whether nutrients are present in excessive amounts. The target for this TMDL is based on levels of nutrients necessary to prevent violations of Florida's DO criterion pursuant to paragraph 62-302.530(47)(a), F.A.C., as set out more fully below.

4.1.2 Inland Nutrients Criteria

While not yet effective as water quality criteria, the FDEP's numeric nutrient criteria represent the state's most recent interpretation of the second part of Florida's narrative criteria, set out at paragraph 62-302.530(47)(b), F.A.C. See section 62-302.531(2). The first part of the narrative criteria, at paragraph 62-302.530(47)(b), F.A.C., also remains applicable to streams in Florida.

Florida's interpretation of its narrative nutrient criteria applies to streams, including (WBID 1409). For streams that do not have a site specific criteria, the interpretation provides for biological information to be considered together with nutrient thresholds to determine whether a waterbody is attaining See paragraph 62-302.531(2)(c), F.A.C. The rule provides that the nutrient criteria are attained in a stream segment where information on chlorophyll a levels, algal mats or blooms, nuisance macrophyte growth, and changes in algal species composition indicates there are no imbalances in flora and either the average score of at least two temporally independent SCIs performed at representative locations and times is 40 or higher, with neither of the two most recent SCI scores less than 35, or the nutrient thresholds set forth in Table 4.1 below are achieved. See paragraph 62-302.531(2)(c).

Florida's interpretation provides that nutrient levels should be expressed as a geometric mean, and concentrations are not to be exceeded more than once in any three calendar year period. Section 62-302.200 (25)(e), F.A.C.

Nutrient Watershed Region	Total Phosphorus Nutrient Threshold	Total Nitrogen Nutrient Threshold
Panhandle West	0.06 mg/L	0.67 mg/L
Panhandle East	0.18 mg/L	1.03 mg/L
North Central	0.30 mg/L	1.87 mg/L
Peninsular	0.12 mg/L	1.54 mg/L
West Central	0.49 mg/L	1.65 mg/L

Table 0.1 Inland numeric nutrient criteria

narrative criterion in paragraph 62-302.530(47)(b), F.A.C., applies. narrative criterion in paragraph 62-302.530(47)(b), F.A.C., applies.		South Florida		, , ,
---	--	---------------	--	-------

4.2 Dissolved Oxygen Criteria

FDEP has conducted a study to support development of revised DO criteria for freshwaters. These revisions have not yet been adopted by the state, or submitted to EPA for review, and therefore, the applicable criterion is the one referenced above. Should any new or revised criteria for DO in Florida streams become applicable for CWA purposes, this waterbody may be re-assessed and the TMDL may be revised.

Numeric criteria for DO are expressed in terms of minimum and daily average concentrations. Section 62-302(30), F.A.C., sets out the water quality criterion for the protection of Class III freshwater waters as:

Shall not be less than 5.0 mg/l. Normal daily and seasonal fluctuations above these levels shall be maintained.

4.3 Natural Conditions

In addition to the standards for nutrients, DO and BOD described above, Florida's standards include provisions that address waterbodies which do not meet the standards due to natural background conditions.

Florida's water quality standards provide a definition of natural background:

"Natural Background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data. 62-302.200(15), FAC.

Florida's water quality standards also provide that:

Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. 62-302.300(15) FAC.

4.4 Biochemical Oxygen Demand Criteria

Biochemical Oxygen Demand (BOD) shall not be increased to exceed values which would cause dissolved oxygen to be depressed below the limit established for each class and, in no case, shall it be great enough to produce nuisance conditions. [FAC 62-302.530 (11)]

The waterbody addressed in this report is a Class III water having a designated use of Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. Designated use classifications are described in Florida's water quality standards in Section 62-302.400, FAC. Water quality criteria for protection of all classes of waters are established in Section 62-302.530, FAC. Individual criteria should be considered in conjunction with other provisions in water quality standards, including Section 62-302.500 FAC, which

established minimum criteria that apply to all waters unless alternative criteria are specified in Section 62-302.530, FAC. In addition, unless otherwise stated, all criteria express the maximum not to be exceeded at any time. The specific criteria addressed in this TMDL document are provided in the following sections.

5.0 WATER QUALITY ASSESSMENT

The WBID addressed in this report was listed as not attaining its designated use on Florida's 2006 303(d) list for dissolved oxygen. To determine impairment, an assessment of available data was conducted. The source for current ambient monitoring data was the Impaired Waters Rule (IWR) data Run 44, using data ranging from January 1, 2000 to December 31, 2010. The IWR database contains data from various sources within the state of Florida, including the WMDs and counties.

5.1 Water Quality Data

Analysis of water quality data for WBID 1409 is documented in Table 5.1. Figures 5.1 illustrates where the water quality monitoring stations are located within the WBID. Water quality data for WBID 1409 can be found below in Figures 5.2 through 5.6. Data from all water quality stations within the WBID have been compiled in each figure.

5.1.1 Dissolved Oxygen

There are several factors that affect the concentration of dissolved oxygen (DO) in a waterbody. Oxygen can be introduced by wind, diffusion, photosynthesis, and additions of higher DO water (e.g. from tributaries). DO concentrations are lowered by processes that use up oxygen from the water, such as respiration and decomposition, and by additions of water with lower DO (e.g. swamp or groundwater). Natural DO levels are a function of water temperature, water depth and velocity, and relative contributions of groundwater. Decomposition of organic matter, such as dead plants and animals, also consume DO. The minimum measured dissolved oxygen concentration in WBID 1409 was 0.40 mg/L, and the maximum was 9.47 mg/L. The mean DO concentration for the WBID was 4.62 mg/L.

5.1.2 Biochemical Oxygen Demand

BOD is a measure of the amount of oxygen used by bacteria as they stabilize organic matter. The process can be accelerated when there is an overabundance of nutrients, increasing the aerobic bacterial activity in a waterbody. In turn, the levels of DO can become depleted, eliminating oxygen essential for biotic survival, and potentially causing extensive fish kills. Additionally, BOD is used as an indicator to determine the presence and magnitude of organic pollution from sources such as septic tank leakage, fertilizer runoff, and wastewater effluent. The maximum measured BOD concentration was 2.30 mg/L, and the minimum concentration was 0.20 mg/L. The mean BOD in WBID 1409 was 1.02 mg/L.

5.1.3 Nutrients

Excessive nutrients in a waterbody can lead to overgrowth of algae and other aquatic plants such as phytoplankton, periphyton and macrophytes. This process can deplete oxygen in the water, adversely affecting aquatic life and potentially restricting recreational uses such as fishing and boating. For the nutrient assessment the monitoring data for total nitrogen, total phosphorus and

chlorophyll a are presented. The purpose of the nutrient assessment is to present the range, variability and average conditions for the WBID.

5.1.3.1 Total Nitrogen

Total Nitrogen (TN) is comprised of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia nitrogen (NH4). Although nitrogen is a necessary nutrient required for the growth of most plants and animals, not all forms are readily used or metabolized. Increased levels of organic nitrogen can be caused from the decomposition of detritus and sewage, while increased levels in inorganic nitrogen can be caused by erosion and fertilizers. Nitrates, which naturally occur in the soil, are components of industrial fertilizers, and are converted to nitrite by microorganisms in the environment. Surface runoff from agricultural lands can increase the natural presence of nitrates in the environment and can lead to eutrophication. In WBID 1409, the minimum total nitrogen concentration was 0.24 mg/L and the maximum concentration was 3.08 mg/L. The total nitrogen mean was 1.09 mg/L.

5.1.3.2 Total Phosphorus

In natural waters, total phosphorus exists in either soluble or particulate forms. Dissolved phosphorus includes inorganic and organic forms, while particulate phosphorus is made up of living and dead plankton, and its adsorbed, amorphous, and precipitated forms. Inorganic forms of phosphorus include orthophosphate and polyphosphates, although polyphosphates are unstable and convert to orthophosphate over time. Orthophosphate is both stable and reactive, making it the form most used by plants. Excessive phosphorus can lead to overgrowth of algae and aquatic plants, the decomposition of which consumes oxygen in the water. The minimum total phosphorus concentration was 0.02 mg/L, and maximum concentration was 0.32 mg/L. The mean concentration in WBID 1409 was 0.07 mg/L.

5.1.3.3 Chlorophyll-a

Chlorophyll is the green pigment in plants that allows them to create energy from light. In a water sample, chlorophyll is indicative of the presence of algae, and chlorophyll-a is a measure of the active portion of total chlorophyll. Corrected chlorophyll refers to chlorophyll-a measurements that are corrected for the presence of pheophytin, a natural degradation product of chlorophyll that can interfere with analysis because it has an absorption peak in the same spectral region. It is used as a proxy indicator of water quality because of its predictable response to nutrient availability. Increases in nutrients can potentially lead to blooms in phytoplankton biomass, affecting water quality and ecosystem health. The measured corrected chlorophyll-a maximum concentration in WBID 1409 was 16.0 µg/L, and the mean was 1.93 µg/L.

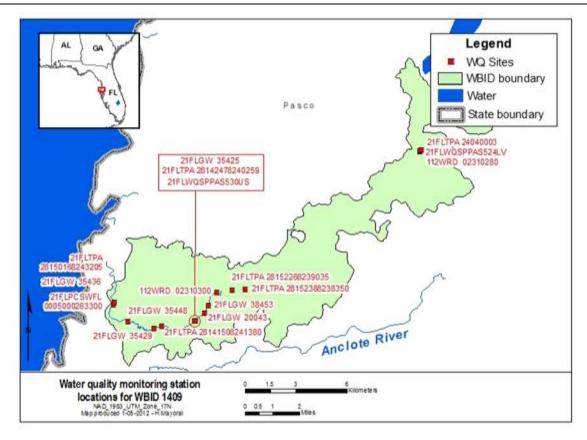
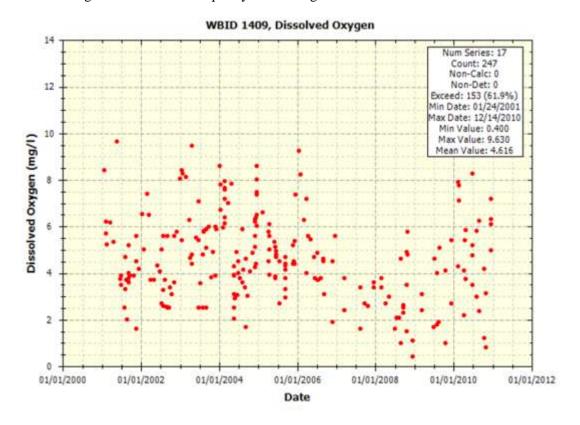



Figure 5.1 Water quality monitoring station locations in WBID 1409

01/01/2010

03/01/2010

05/01/2010

Figure 5.2 Dissolved oxygen concentrations in WBID 1409

Figure 5.3 Biochemical oxygen demand concentrations in WBID 1409

Date

09/01/2010

11/01/2010

01/01/2011

07/01/2010

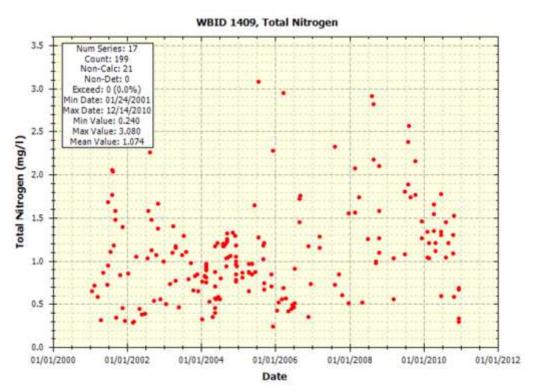


Figure 5.4 Total nitrogen concentrations in WBID 1409

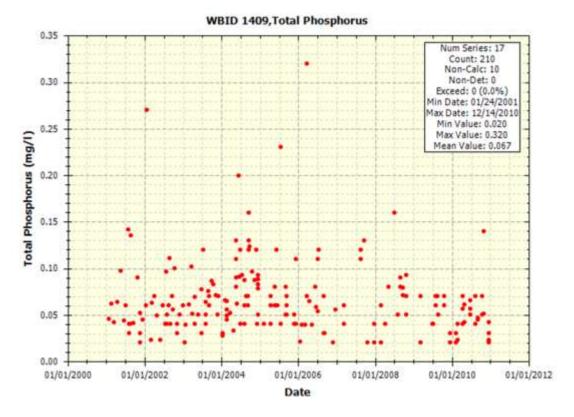


Figure 5.5 Total phosphorus concentrations in WBID 1409

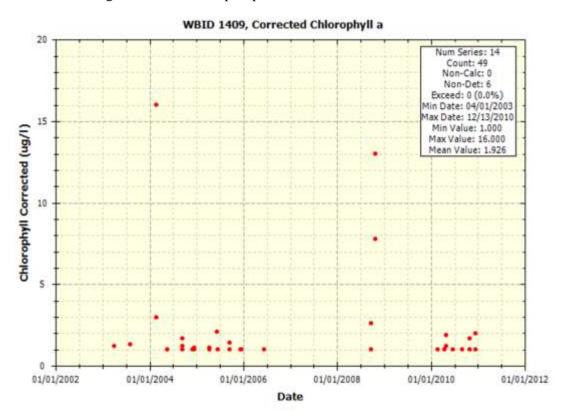


Figure 5.6 Corrected chlorophyll a concentrations in WBID 1409

Table 5.1 Water quality data for impaired WBID 1409 in the Pithlachascotee River basin.

Donomotor	Stata	WBID
Parameter	Stats	1409
ပ်	# of obs	9
20°C	min	0.20
Day, mg/L	max	2.30
BOD, 5 Day, (mg/L)	mean	1.02
)A	Geomean	0.82
pe	# of obs	222
y Pro	min	0.40
lysis b mg/L)	max	9.47
DO, Analysis by Probe (mg/L)	mean	4.62
20	Geomean	4.20
as	# of obs	195
litrogen, Total (mg/L as N)	min	0.24
Total N)	max	3.08
ogen,	mean	1.09
Nitr	Geomean	0.97
/L as	# of obs	195
la (mg	min	0.02
s, Tota P)	max	0.32
ohorus	mean	0.07
Phosphorus, Total (mg P)	Geomean	0.06
ر ر	# of obs	49
Chlorophyll-A- orrected (µg/L)	min	1.00
Chlo	max	16.00

mean	1.93
Geomean	1.37

6.0 SOURCE AND LOAD ASSESSMENT

An important part of the TMDL analysis is the identification of source categories, source subcategories, or individual sources of pollutants in the watershed and the amount of loading contributed by each of these sources. Sources are broadly classified as either point or nonpoint sources. Nutrients can enter surface waters from both point and nonpoint sources.

6.1 Point Sources

A point source is defined as a discernible, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point source discharges of industrial wastewater and treated sanitary wastewater must be authorized by National Pollutant Discharge Elimination System (NPDES) permits. NPDES permitted discharges include continuous discharges such as wastewater treatment facilities as well as some stormwater driven sources such as municipal separate stormwater sewer systems (MS4s), certain industrial facilities, and construction sites over one acre.

6.1.1 Wastewater/Industrial Permitted Facilities

A TMDL wasteload allocation (WLA) is given to wastewater and industrial NPDES permitted facilities discharging to surface waters within an impaired watershed. The two NPDES-permitted facilities were re-use facilities and no discharge data was associated with the facilities. The permitted facilities are listed in Table 6.1 and shown in Figure 6.1.

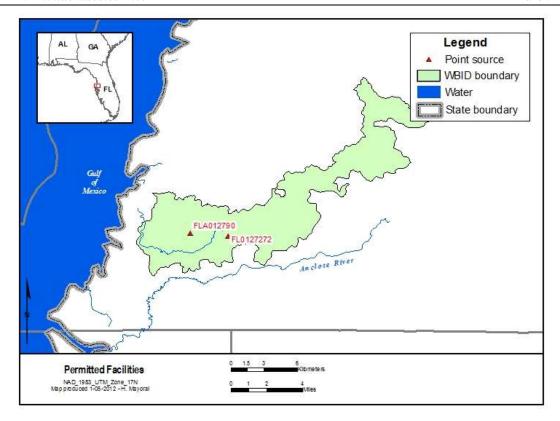


Figure 6.1 Permitted facilities in the impaired WBID in the Pithlachascotee River basin.

Table 6.1 Permitted Facilities by WBID.

Facility Number	Facility Name	Туре
FL0127272*	Pasco County Master Reuse System	Domestic
FLA012790*	Orangewood Lakes MHP Community WWTF	Domestic

^{*}No data

6.1.2 Stormwater Permitted Facilities/MS4s

MS4s are point sources also regulated by the NPDES program. According to 40 CFR 122.26(b)(8), an MS4 is "a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law)...including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the Clean Water Act that discharges into waters of the United States.
- (ii) Designed or used for collecting or conveying storm water;

- (iii) Which is not a combined sewer; and
- (iv) Which is not part of a Publicly Owned Treatment Works

MS4s may discharge nutrients and other pollutants to waterbodies in response to storm events. In 1990, USEPA developed rules establishing Phase I of the NPDES stormwater program, designed to prevent harmful pollutants from being washed by stormwater runoff into MS4s (or from being dumped directly into the MS4) and then discharged from the MS4 into local waterbodies. Phase I of the program required operators of "medium" and "large" MS4s (those generally serving populations of 100,000 or greater) to implement a stormwater management program as a means to control polluted discharges from MS4s. Approved stormwater management programs for medium and large MS4s are required to address a variety of water quality related issues including roadway runoff management, municipal owned operations, hazardous waste treatment, etc.

Phase II of the rule extends coverage of the NPDES stormwater program to certain "small" MS4s. Small MS4s are defined as any MS4 that is not a medium or large MS4 covered by Phase I of the NPDES stormwater program. Only a select subset of small MS4s, referred to as "regulated small MS4s", requires an NPDES stormwater permit. Regulated small MS4s are defined as all small MS4s located in "urbanized areas" as defined by the Bureau of the Census, and those small MS4s located outside of "urbanized areas" that are designated by NPDES permitting authorities.

In October 2000, USEPA authorized FDEP to implement the NPDES stormwater program in all areas of Florida except Indian tribal lands. FDEP's authority to administer the NPDES program is set forth in Section 403.0885, Florida Statutes (FS). The three major components of NPDES stormwater regulations are:

- MS4 permits that are issued to entities that own and operate master stormwater systems, primarily local governments. Permittees are required to implement comprehensive stormwater management programs designed to reduce the discharge of pollutants from the MS4 to the maximum extent practicable.
- Stormwater associated with industrial activities, which is regulated primarily by a multisector general
 permit that covers various types of industrial facilities. Regulated industrial facilities must obtain NPDES
 stormwater permit coverage and implement appropriate pollution prevention techniques to reduce
 contamination of stormwater.
- Construction activity general permits for projects that ultimately disturb one or more acres of land and which require the implementation of stormwater pollution prevention plans to provide for erosion and sediment control during construction.

Stormwater discharges conveyed through the storm sewer system covered by the permit are subject to the WLA of the TMDL. Any newly designated MS4s will also be required to achieve the percent reduction allocation presented in this TMDL. Phase I and Phase II MS4 permits by WBID are listed on Table 6.2.

Comment Name	Dha	Facility	٧ ((: ١ :
	Table 6.2	MS4 Permits	by WBID.

Segment Name	Phase	Facility Number	Affiliate	Co-Permittee(s)
Pithlachascotee River	IC	FLS000032	Pasco County	City of New Port Richey, Florida Department of Transportation

6.2 Nonpoint Sources

Nonpoint sources of pollution are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. For nutrients, these sources include runoff of agricultural fields, golf courses, and lawns, septic tanks, and residential developments outside of MS4 areas. Nonpoint source pollution generally involves a buildup of pollutants on the land surface that wash off during rain events and as such, represent contributions from diffuse sources, rather than from a defined outlet. Potential nonpoint sources are commonly identified based on land cover data. Most methods calculate nonpoint source loadings as the product of the water quality concentration and runoff water volume associated with certain land use practices. The mean concentration of pollutants in the runoff from a storm event is known as the event mean concentration. In order to identify possible pollutant sources in the watershed, the landuse coverage was reviewed. Figure 3.2 provides a map of the land use in draining to the WBID, while Table 3.2 lists the land use distribution for the drainage area in the WBID. The following sections are organized by land use. Each section provides a description of the land use, the typical sources of nutrient loading (if applicable), and typical total nitrogen and total phosphorus event mean concentrations.

6.2.1 Urban Areas

Urban areas include land uses such as residential, industrial, extractive and commercial. Land uses in this category typically have somewhat high total nitrogen event mean concentrations and average total phosphorus event mean concentrations. Nutrient loading from MS4 and non-MS4 urban areas is attributable to multiple sources including stormwater runoff, leaks and overflows from sanitary sewer systems, illicit discharges of sanitary waste, runoff from improper disposal of waste materials, leaking septic systems, and domestic animals.

In 1982, Florida became the first state in the country to implement statewide regulations to address the issue of nonpoint source pollution by requiring new development and redevelopment to treat stormwater before it is discharged. The Stormwater Rule, as outlined in Chapter 403 FS, was established as a technology-based program that relies upon the implementation of Best Management Practices (BMPs) that are designed to achieve a specific level of treatment (i.e., performance standards) as set forth in Chapter 62-40, FAC.

Florida's stormwater program is unique in having a performance standard for older stormwater systems that were built before the implementation of the Stormwater Rule in 1982. This rule states: "the pollutant loading from older stormwater management systems shall be reduced as needed to restore or maintain the beneficial uses of water." [FAC 62-40-.432(2)(c)]

Nonstructural and structural BMPs are an integral part of the State's stormwater programs. Nonstructural BMPs, often referred to as "source controls", are those that can be used to prevent the generation of nonpoint source pollutants or to limit their transport off-site. Typical nonstructural BMPs include public education, land use management, preservation of wetlands and floodplains, and minimization of impervious surfaces. Technology-based structural BMPs are used to mitigate the increased stormwater peak discharge rate, volume, and pollutant loadings that accompany urbanization.

Urban, residential, and commercial developments are a significant nonpoint source of nutrients and oxygen-demanding substances. The total developed land use in the contributing subwatersheds in WBID 1409 accounts for 32 percent of the total land use and is likely a cause of impairment,

specifically in the lower portion of the Pithlachascotee River, where the developed land use is concentrated.

Onsite Sewage Treatment and Disposal Systems (Septic Tanks)

As stated above leaking septic tanks or onsite sewage treatment and disposal systems (OSTDs) can contribute to nutrient loading in urban areas. Water from OSTDs is typically released to the ground through on-site, subsurface drain fields or boreholes that allow the water from the tank to percolate (usually into the surficial aquifers) and either transpire to the atmosphere through surface vegetation or add to the flow of shallow ground water. When properly sited, designed, constructed, maintained, and operated, OSTDs are a safe means of disposing of domestic waste. The effluent from a well-functioning OSTD receives natural biological treatment in the soil and is comparable to secondarily treated wastewater from a sewage treatment plant. When not functioning properly, OSTDs can be a source of nutrients, pathogens, and other pollutants to both ground water and surface water.

The State of Florida Department of Health publishes data on new septic tank installations and the number of septic tank repair permits issued for each county in Florida. Table 6.3 summarizes the cumulative number of septic systems installed in Pasco County since the 1970 census and the total number of repair permits issued for the ten years between 1999-2000 and 2009-2010 (FDOH 2009). The data do not reflect septic tanks removed from service. Leaking septic systems could be a relevant source of organic and nutrient loading in the watershed.

Table 6.3 County estimates of Septic Tanks and Repair Permits.

County	Number of Septic Tanks (1970-2008)	Number of Repair Permits Issued (2000-2010)
Pasco	70,594	11,601

Note: Source: http://www.doh.state.fl.us/environment/ostds/statistics/ostdsstatistics.htm

6.2.2 Pastures

Pastures include cropland and improved and unimproved pasturelands, such as non-tilled grasses woodland pastures, feeding operations, nurseries and vineyards; as well as specialty farms. Agricultural activities, including runoff of fertilizers or animal wastes from pasture and cropland and direct animal access to streams, can generate nutrient loading to streams. The highest total nitrogen and total phosphorus event mean concentrations are associated with agricultural land uses.

The USDA National Agricultural Statistics Service (NASS) compiles Census of Agriculture data by county for virtually every facet of U.S. agriculture (USDA NASS 2007). According to the 2007 Census of Agriculture, there were 578 farms within Pasco County that fertilized with commercial fertilizer and 96 farms that fertilized with manure (Table 6.4). Livestock counts of cattle and pigs for all Pasco County are provided in Table 6.5. Due to agricultural census data being collected at the county level, the extent to which these values pertain to agricultural fields within the impaired watershed is not specific.

Land use data and aerial coverage of the Pithlachascotee River basin shows that the impaired WBID has less than 4,000 acres of agricultural land use. A majority of pasture land use occurs in the eastern portion of the WBID, and accounts for 7 percent of the total land use. Row crops are less than 1 percent of the total land use. The pasture and row crop land uses are a potential source of non-point source nutrient loading, specifically in the headwaters of the Pithlachascotee River.

Table 6.4 Agricultural Census Data for Commercially and manure fertilized farms in Pasco County, Florida.

County	Comm	nercial	Manure	
County	Number of Farms	Number of Acres	Number of Farms	Number of Acres
Pasco	578	31,641	96	2,463

Table 6.5 Agricultural Census Data for Livestock in Pasco County, Florida.

County	Livestock	Number of Farms	Number of Animals
Dance	Cattles and Calves	651	33,424
Pasco	Hogs and Pigs	28	210

Note: 1. A farm is defined as any place from which \$1,000 or more of agricultural products were produced and sold, or normally would have been sold, during the census year.

6.2.3 Clear cut/Sparse

The clear cut/sparse land use classification includes recent clear cuts, areas of sparse vegetation or herbaceous dry prairie, shrub and brushland, other early successional areas, and mixed rangeland. Event mean concentrations for clear cut/sparse can be relatively low for total nitrogen and low for total phosphorus. Clear cut/sparse land uses accounts for 3 percent of the total land use in the impaired WBID.

6.2.4 Forests

Upland forests include flatwoods, oak, various types of hardwoods, conifers and tree plantations. Wildlife, located within forested areas, deposit their feces onto land surfaces where it can be transported to nearby streams during storm events. Generally, the pollutant load from wildlife is assumed to represent background concentrations. Event mean concentrations for upland forests are low for both total nitrogen and total phosphorus. Total combined forest land uses in the contributing subwatersheds comprise 25 percent of the total land uses. Most of the forested land uses are located in the headwaters of watershed.

6.2.5 Water and Wetlands

Water and Wetlands often have very low nutrient loadings, although decaying organic matter in wetlands can contribute to high organic nutrient concentrations. Approximately 29 percent of the land use, or 10,802 acres, in the contributing subwatersheds is classified as wetlands.

6.2.6 Quarries/Strip mines

Land use classification includes quarries, strip mines, exposed rock and soil, fill areas, reclaimed lands, and holding ponds. These types of land cover comprise less than 1 percent. Event mean concentrations for some barren lands can be high in total nitrogen, and in WBID 1409 is not a likely source of impairment.

7.0 ANALYTICAL APPROACH

In the development of a TMDL there needs to be a method for relating current loadings to the observed water quality problem. This relationship could be statistical (regression for a cause and effect relationship), empirical (based on observations not necessarily from the waterbody in question) or mechanistic (physically and/or stochastically based) that inherently relate cause and effect using physical and biological relationships.

Mechanistic models were used in the development of the Pithlachascotee River TMDL to relate the physical and biological relationships. A dynamic watershed model was used to predict the quantity of water and pollutants associated with runoff from rain events. The model was linked to a water quality simulation model that integrated the loadings and flow from the watershed model with flow from the hydrodynamic model to predict the water quality in the receiving waterbodies.

The period of simulation that was considered in the development of this TMDL is January 1, 2000 to December 31, 2009. The models were used to predict time series for BOD, TN, TP, and DO. The models were calibrated to current conditions and were then used to predict improvements in water quality as function of reductions in loadings.

7.1 Mechanistic Modeling

LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality overland as well as a simplified stream fate and transport model. LSPC is derived from the Mining Data Analysis System (MDAS), which was originally developed by USEPA Region 3 (under contract with Tetra Tech) and has been widely used for TMDLs. In 2003, the USEPA Region 4 contracted with Tetra Tech to refine, streamline, and produce user documentation for the model for public distribution. LSPC was developed to serve as the primary watershed model for the USEPA TMDL Modeling Toolbox. LSPC was used to simulate runoff (flow, biochemical oxygen demand, total nitrogen, total phosphorus and dissolved oxygen) from the land surface using a daily timestep for current and natural conditions. LSPC provided tributary flows and temperature to the EFDC estuary models and tributary water quality concentrations to WASP7 estuary models.

In order to evaluate the contributing sources to a waterbody and to represent the spatial variability of these sources within the watershed model, the contributing drainage area was represented by a series of sub-watersheds. The subwatersheds were developed using the USGS 12-digit hydrologic unit code, USGS National Hydrographic Dataset.

The LSPC model is driven by precipitation and other climatological data (e.g., air temperature, evapotranspiration, dew point, cloud cover, wind speed, solar radiation), and data from nearby weather stations were used in the modeling effort. The subwatersheds were represented by the hydrologic soil group that had the highest percentage of coverage within the boundaries of the subwatershed.

The basis for distributing hydrologic and pollutant loading parameters throughout the watershed is correlated to soil characteristics and land use practices. The 2006 National Land Use Cover Database (NLCD), 2004 SWFWMD Land Cover, and the soil survey geographic database (SSURGO) were used in the modeling effort and subsequent TMDL development.

The modeling assumptions are outlined in the Technical Support Document for U.S. EPA's Proposed Rule for Numeric Nutrient Criteria for Florida's Estuaries, Coastal Waters, and Southern

Inland Flowing Waters - Volume 1: Estuaries, Appendix C: Watershed Hydrology and Water Quality Modeling Report for 19 Florida Watersheds (USEPA 2012a). The calibration results for the Crystal Watershed are located in the Technical Support Document for U.S. EPA's Proposed Rule for Numeric Nutrient Criteria for Florida's Estuaries, Coastal Waters, and Southern Inland Flowing Waters - Volume 1: Estuaries, Appendix C Attachment 14: The Crystal Watershed (USEPA 2012b).

To model the Pithlachascotee River basin, the relatively large subwatersheds in the Crystal Watershed Model were re-delineated using the USGS NHD catchments. Only the subwatersheds draining to the Pithlachascotee River were used to evaluate loadings in the Pithlachascotee River. When re-delineated to the small scale, it was determined that loadings from the original Crystal model were low in the Pithlachascotee River. Loadings from the watershed were increased for the Pithlachascotee River modeling effort for successful calibration.

7.2 Scenarios

Two modeling scenarios were developed and evaluated in this TMDL determination, a current condition and a natural condition. Additionally, a loading analysis was conducted to quantify nutrient loadings from the Pithlachascotee River entering the downstream waterbody.

7.2.1 Current Condition

The current condition scenario evaluated current hydrologic and water quality conditions in the watershed, specifically water quality concentration and loadings at the outlet of WBID 1409. The current condition annual average concentrations for the Pithlachascotee River WBID are presented in Table 7.1. The current condition simulation was used to determine the base loadings for WBID. These base loadings (Table 7.2), when compared with the TMDL scenarios, were used to determine the percent reduction in nutrient loads that will be needed to achieve water quality standards. Figures 7.1 through 7.7 provide the calibrated current condition modeled parameters for WBID 1409.

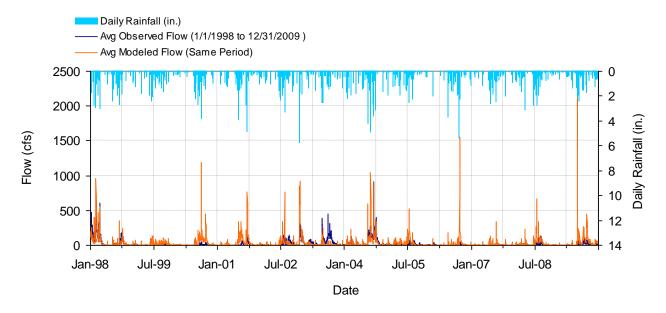


Figure 7.1 Modeled vs. Measured Flow (cfs) at USGS Station 02310300

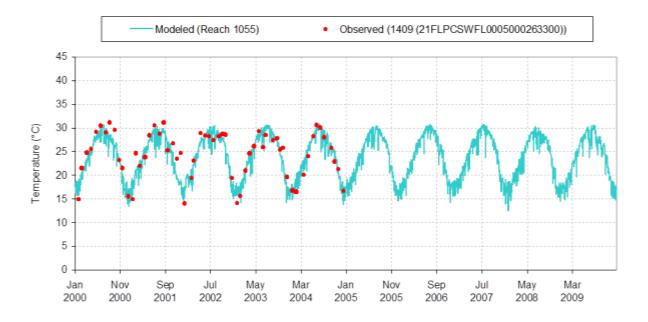


Figure 7.2 Modeled vs. Observed Temperature (°C) at 21FLPCSWFL0005000263300

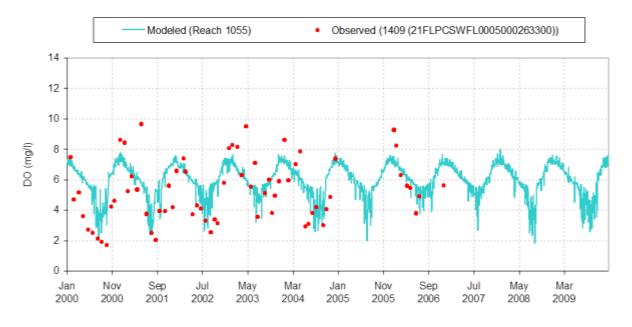


Figure 7.3 Modeled vs. Observed DO (mg/l) at 21FLPCSWFL0005000263300

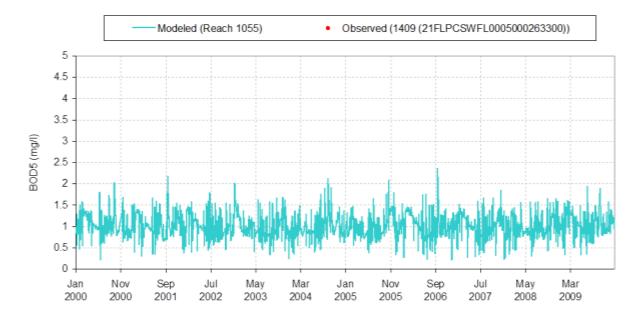


Figure 7.4 Modeled vs. Observed BOD5 (mg/l) at 21FLPCSWFL0005000263300

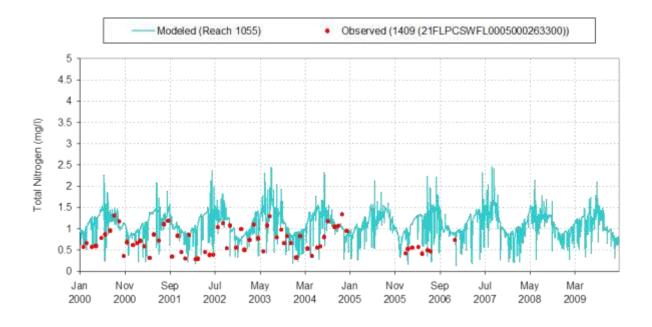


Figure 7.5 Modeled vs. Observed Total Nitrogen (mg/l) at 21FLPCSWFL0005000263300

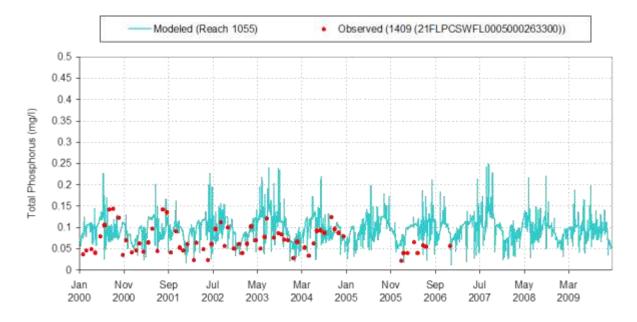


Figure 7.6 Modeled vs. Observed Total Phosphorus (mg/l) at 21FLPCSWFL0005000263300

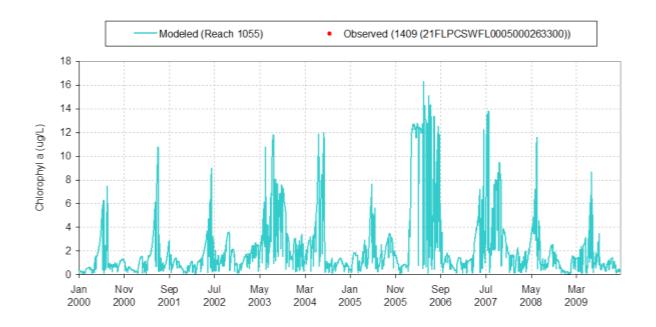


Figure 7.7 Modeled vs. Observed Chlorophyl a (ug/L) at 21FLPCSWFL0005000263300

Table 7.1 Current condition concentrations in the impaired WBID in the Pithlachascotee River basin.

Parameter	WBID 1409
Total nitrogen (mg/L)	0.88
Total phosphorus (mg/L)	0.07
BOD (mg/L)	1.00
DO (mg/L)	5.96

Table 7.2 Current condition loadings in the impaired WBID in the Pithlachascotee River basin.

	WBID 1409	
Parameter	WLA (kg/yr)	LA (kg/yr)
Total nitrogen (mg/L)		40,962
Total phosphorus (mg/L)		3,147
BOD (mg/L)		52,458

7.2.2 Natural Condition

The natural condition scenario was developed to estimate water quality conditions if there was no impact from anthropogenic sources. The point sources located in the model were removed for the natural condition analysis. Landuses that were associated with anthropogenic activities (urban, agriculture, transportation, barren lands and rangeland) were converted to upland forests or forested wetlands based on the current ration of forest and wetland landuses in the model. The natural condition water quality predictions are presented in Table 7.3 and 7.4.

The purpose of the natural conditions scenario was to determine whether water quality standards could be achieved without abating the naturally occurring loads from the watershed. The natural condition modeling scenario indicated that the DO standard is not achievable under natural conditions, indicating that low DO is a naturally occurring phenomenon in WBID 1409. Figures 7.8 through 7.13 provide the natural condition scenario modeled parameters for WBID 1409.

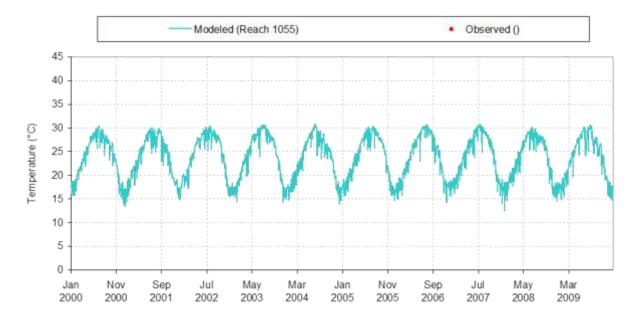


Figure 7.8 Natural Condition Scenario Temperature (°C)

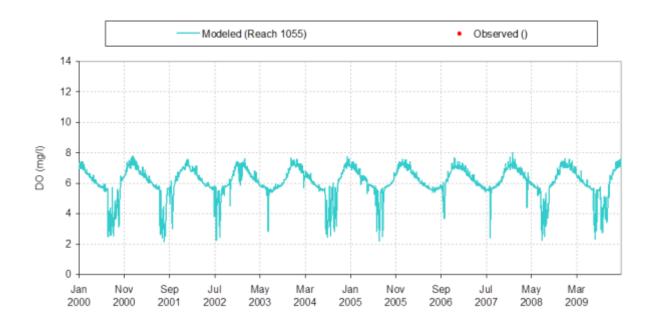


Figure 7.9 Natural Condition Scenario DO (mg/l)

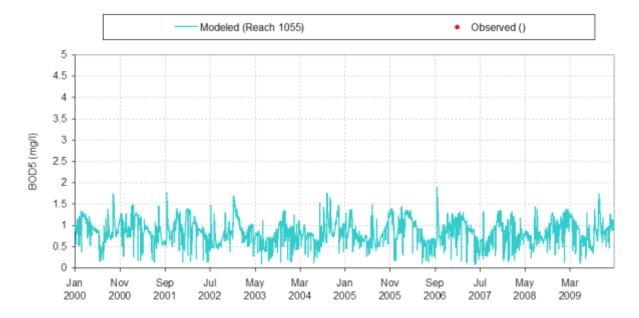


Figure 7.10 Natural Condition Scenario BOD5 (mg/l)

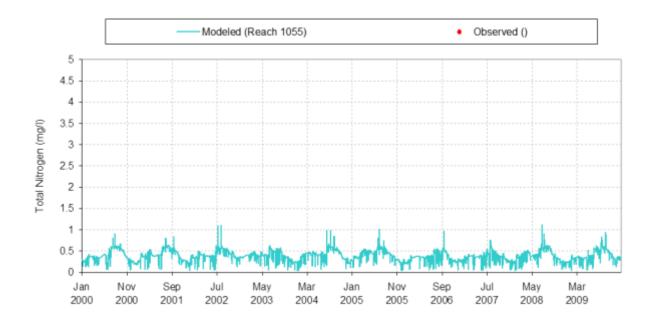


Figure 7.11 Natural Condition Scenario Total Nitrogen (mg/l)

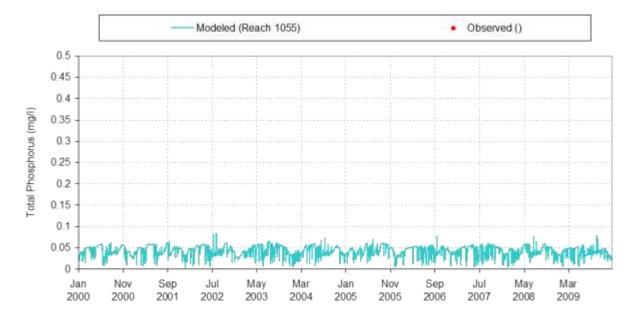


Figure 7.12 Natural Condition Scenario Total Phosphorus (mg/l)

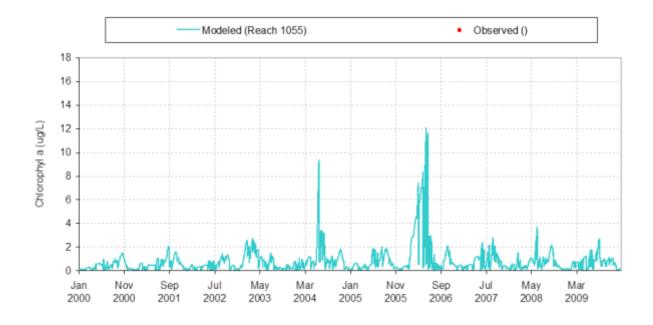


Figure 7.13 Natural Condition Scenario Chlorophyl a (ug/L)

Table 7.3 Natural condition concentrations in the impaired WBID in the Pithlachascotee River basin.

Parameter	WBID 1409
Total nitrogen (mg/L)	0.22
Total phosphorus (mg/L)	0.02
BOD (mg/L)	0.84
DO (mg/L)	6.06

Table 7.4 Natural condition loadings in the impaired WBID in the Pithlachascotee River basin.

	WBID 1409	
Parameter	WLA (kg/yr)	LA (kg/yr)
Total nitrogen (mg/L)		14,964
Total phosphorus (mg/L)		958
BOD (mg/L)		35,311

8.0 TMDL DETERMINATION

The TMDL for a given pollutant and waterbody is comprised of the sum of individual wasteload allocations (WLAs) for point sources, and load allocations (LAs) for both nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this definition is represented by the equation:

$$TMDL = \sum WLA_S + \sum LA_S + MOS$$

The TMDL is the total amount of pollutant that can be assimilated by the receiving waterbody and still achieve water quality standards and the waterbody's designated use. In this TMDL development, allowable concentrations from all pollutant sources that cumulatively amount to no more than the TMDL must be set and thereby provide the basis to establish water quality-based controls. These TMDLs are expressed as annual geometric mean concentrations, since the approach used to determine the TMDL targets relied on geometric means. The TMDLs targets were determined to be the conditions needed to restore and maintain a balanced aquatic system. Furthermore, it is important to consider nutrient loading over time, since nutrients can accumulate in waterbodies.

The TMDL was determined for the concentrations coming from the upstream watersheds that directly drain into WBID 1409. During the development of this TMDL, it was determined that the natural condition scenario (removal of all anthropogenic sources and landuses) did not meet the Florida standards for DO. The DO was greater during the natural condition run, and nutrient loadings from the natural condition scenario were therefore used to determine the TMDL in accordance with the Natural Conditions narrative rule. The allocations for WBID 1409 for total nitrogen, total phosphorus, and biochemical oxygen demand are presented in Table 8.1.

Current Condition TMDL Condition Percent Reduction Constituent **WLA WLA** LA (kg/yr) **WLA** LA LA (kg/yr) MS4 (kg/yr) (kg/yr) **Total** 40,962 14,964 63% 63% Nitrogen **Total** 3,147 958 70% 70% **Phosphorus Biochemical** 52,458 Oxygen 35,311 33% 33% **Demand**

Table 8.1 TMDL load allocations for the Pithlachascotee River, WBID 1409

8.1 Critical Conditions and Seasonal Variation

EPA regulations at 40 CFR 130.7(c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The critical condition is the combination of environmental factors creating the "worst case" scenario of water quality conditions in the waterbody. By achieving the water quality standards at critical conditions, it is expected that water

quality standards should be achieved during all other times. Seasonal variation must also be considered to ensure that water quality standards will be met during all seasons of the year, and that the TMDLs account for any seasonal change in flow or pollutant discharges, and any applicable water quality criteria or designated uses (such as swimming) that are expressed on a seasonal basis.

The critical condition for nonpoint source concentration and wet weather point source concentrations is typically an extended dry period followed by a rainfall runoff event. During the dry weather period, nutrients build up on the land surface, and are washed off by rainfall. The critical condition for continuous point source concentrations typically occurs during periods of low stream flow when dilution is minimized. Although loading of nonpoint source pollutants contributing to a nutrient impairment may occur during a runoff event, the expression of that nutrient impairment is more likely to occur during warmer months, and at times when the waterbody is poorly flushed.

8.2 Margin of Safety

The Margin of Safety accounts for uncertainty in the relationship between a pollutant load and the resultant condition of the waterbody. There are two methods for incorporating an MOS into TMDLs (USEPA 1991):

- > Implicitly incorporate the MOS using conservative model assumptions to develop allocations
- Explicitly specify a portion of the total TMDL as the MOS and use the remainder for Allocations

This TMDL uses an implicit MOS since the TMDL targets for nutrients were set to natural background conditions.

8.3 Waste Load Allocations

Only MS4s and NPDES facilities discharging directly into lake segments (or upstream tributaries of those segments) are assigned a WLA. The WLAs, if applicable, are expressed separately for continuous discharge facilities (e.g., WWTPs) and MS4 areas, as the former discharges during all weather conditions whereas the later discharges in response to storm events.

8.3.1 Wastewater/Industrial Permitted Facilities

A TMDL wasteload allocation (WLA) is given to wastewater and industrial NPDES-permitted facilities discharging to surface waters within an impaired watershed. The two NPDES-permitted point sources are re-use facilities with no discharge data. Therefore a WLA was not calculated.

8.3.2 Municipal Separate Storm Sewer System Permits

The WLA for MS4s are expressed in terms of percent reductions equivalent to the reductions required for nonpoint sources. Given the available data, it is not possible to estimate concentrations coming exclusively from the MS4 areas. Although the aggregate concentration allocations for stormwater discharges are expressed in numeric form, i.e., percent reduction, based on the information available today, it is infeasible to calculate numeric WLAs for individual stormwater outfalls because discharges from these sources can be highly intermittent, are usually characterized by very high flows occurring over relatively short time intervals, and carry a variety of pollutants whose nature and extent varies according to geography and local land use. For example, municipal sources such as those covered by this TMDL often include numerous individual outfalls spread over large areas. Water quality impacts, in turn, also depend on a wide range of factors, including the magnitude and duration of rainfall events, the time period between events, soil conditions, fraction of land that is impervious to rainfall, other land use activities, and the ratio of stormwater discharge to receiving water flow.

This TMDL assumes for the reasons stated above that it is infeasible to calculate numeric water quality-based effluent limitations for stormwater discharges. Therefore, in the absence of information presented to the permitting authority showing otherwise, this TMDL assumes that water quality-based effluent limitations for stormwater sources of nutrients derived from this TMDL can be expressed in narrative form (e.g., as best management practices), provided that: (1) the permitting authority explains in the permit fact sheet the reasons it expects the chosen BMPs to achieve the aggregate wasteload allocation for these stormwater discharges; and (2) the state will perform ambient water quality monitoring for nutrients for the purpose of determining whether the BMPs in fact are achieving such aggregate wasteload allocation.

All Phase 1 MS4 permits issued in Florida include a re-opener clause allowing permit revisions for implementing TMDLs once they are formally adopted by rule. Florida may designate an area as a regulated Phase II MS4 in accordance with Rule 62-620.800, FAC. Florida's Phase II MS4 Generic Permit has a "self-implementing" provision that requires MS4 permittees to update their stormwater management program as needed to meet their TMDL allocations once those TMDLs are adopted. Permitted MS4s will be responsible for reducing only the loads associated with stormwater outfalls which it owns, manages, or otherwise has responsible control. MS4s are not responsible for reducing other nonpoint source loads within its jurisdiction. All future MS4s permitted in the area are automatically prescribed a WLA equivalent to the percent reduction assigned to the LA. The MS4 service areas described in Section 6.1.2 of this report are required to meet the percent reduction prescribed in Table 8.1, through the implementation of BMPs.

8.4 Load Allocations

The load allocation for nonpoint sources was assigned a percent reduction in nutrient concentrations from the current concentrations coming into the WBID addressed in the TMDL report.

9.0 RECOMMENDATIONS/IMPLEMENTATION

The initial step in implementing a TMDL is to more specifically locate pollutant source(s) in the watershed. FDEP employs the Basin Management Action Plan (B-MAP) as the mechanism for developing strategies to accomplish the specified load reductions. Components of a B-MAP are:

- Allocations among stakeholders
- Listing of specific activities to achieve reductions
- Project initiation and completion timeliness
- Identification of funding opportunities
- Agreements
- Local ordinances
- Local water quality standards and permits
- Follow-up monitoring

10.0 REFERENCES

Florida Administrative Code. Chapter 62-40, Water Resource Implementation Rule.

Florida Administrative Code. Chapter 62-302, Surface Water Quality Standards.

Florida Administrative Code. Chapter 62-303, Identification of Impaired Surface Waters.

- Florida Department of Health (FDOH), 2009, Onsite Sewage Treatment and Disposal Systems Statistical Data, Bureau of Onsite Sewage Programs.

 http://www.doh.state.fl.us/environment/ostds/statistics/ostdsstatistics.htm Accessed March 2012.
- Florida Department of Environmental Protection (FDEP). No date. *Learn About Your Watershed: Springs Coast Watershed*. http://www.protectingourwater.org/watersheds/map/springs_coast/ Accessed March 2012.
- Florida Department of Environmental Protection (FDEP). 2008. Water Quality Assessment Report. Florida Department of Environmental Protection. http://waterwebprod.dep.state.fl.us/basin411/springscoast/assessment/G5AS-Springs CoastLORES Merged.pdf>. Accessed March 2012.
- Hamrick, J. M., 1992: A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. The College of William and Mary, Virginia Institute of Marine Science. Special Report 317, 63 pp.
- National Oceanic and Atmospheric Administration (NOAA). No Date. *Climate Normals for Tampa Bay Area*. National Weather Service, National Oceanic and Atmospheric Administration. http://www.srh.noaa.gov/images/tbw/TopNews/PDF/August1NewNormals.pdf>. Accessed March 2012.
- Southwest Florida Water Mangement District (SWFWMD). 2001. Springs Coast Comprehensive Watershed Management Plan. Southwest Florida Water Management District. http://www.swfwmd.state.fl.us/documents/plans/cwm/cwm-springscoast.pdf>. Accessed March 2012.
- United States Army Corp of Engineers (USACE) and South Florida Water Management District (SFWMD). 2010. Central and Southern Florida Project Comprehensive Everglades Restoration Plan: Biscayne Bay Coastal Wetlands Phase 1. Draft Integrated Project Implementation Report and Environmental Impact Statement. U.S. Army Corps of Engineers and South Florida Water Management District. http://www.evergladesplan.org/pm/projects/project_docs/pdp_28_biscayne/031910_dpir/031910_bbcw_dpir_vol_1_main_report.pdf. Accessed March 2012.
- United States Department of Agriculture (USDA). 2007. 2007 Census of Agriculture. National Agricultural Statistics Service (USDA NASS), U.S. Department of Agriculture. http://www.agcensus.usda.gov/Publications/2007/Full Report/index.asp. Accessed March 2012.
- United States Environmental Protection Agency (USEPA). 1991. *Guidance for Water Quality Based Decisions: The TMDL Process.* U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA-440/4-91-001, April 1991.

- United States Environmental Protection Agency (USEPA). 2012a. Technical Support Document for U.S. EPA's Proposed Rule for Numeric Nutrient Criteria for Florida's Estuaries, Coastal Waters, and Southern Inland Flowing Waters - Volume 1: Estuaries, Appendix C: Watershed Hydrology and Water Quality Modeling Report for 19 Florida Watersheds. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. July 2012.
- United States Environmental Protection Agency (USEPA). 2012b. Technical Support Document for U.S. EPA's Proposed Rule for Numeric Nutrient Criteria for Florida's Estuaries, Coastal Waters, and Southern Inland Flowing Waters Volume 1: Estuaries, Appendix C Attachment 14: The Crystal Watershed. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. July 2012.
- Wool, T. A., S. R. Davie, and H. N. Rodriguez, 2003: Development of three-dimensional hydrodynamic and water quality models to support TMDL decision process for the Neuse River estuary, North Carolina. J. Water Resources Planning and Management, 129, 295-306.